Now Accepting Nominations
2025 Harrington Prize for Innovation in Medicine
December 05, 2023
Researchers at Case Western Reserve University and University Hospitals have identified an enzyme that blocks insulin produced in the body—a discovery that could provide a new target to treat diabetes.
Their study, published Dec. 5 in the journal Cell, focuses on nitric oxide, a compound that dilates blood vessels, improves memory, fights infection and stimulates the release of hormones, among other functions. How nitric oxide performs these activities had long been a mystery.
Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.
Cardiovascular
University Hospitals - Cleveland
Harrington Investigators